

Writing SystemTap Scripts

Eugene Teo
Slides: http://www.kernel.sg/talks/lca2008/

http://www.kernel.sg/talks/lca2008/

What is SystemTap?
● Troubleshooting and analysis tool

● SystemTap scripting language translator

● Protected and simple interface to kprobes

● System-wide and process-centric views

● Extensible framework to write new tools

● Free and open source software (GPL)

Why use SystemTap?
● To extend functionality in traditional tools

● To find out system or process-related queries

– Why does my disk keep writing something?

– What is the current resource limits for mingetty?

– How many sockets and pipes did dbus-launch use?

– How can I pin down a lock contention problem?
● To write new tools and instrumentation frameworks

– I like using tool X but it is only available in operating system Y

– Fault injection framework

Why use SystemTap?
● Learn by looking at examples:

– kprobe_example.c in linux-2.6/Documentation/kprobes.txt

– SystemTap equivalent – kprobe_example.sh + regs.stp
● Compare the two different implementations

– Complexity

– Amount of code

– Code safety
● Write less code yet achieve the same objective

How SystemTap works?
● SystemTap tool goes through 5 passes:

– pass 1: parsing

– pass 2: semantic analysis

– pass 3: translation

– pass 4: compilation

– pass 5: run

Components of SystemTap script
● Strictly typed, declaration free, procedural, and inspired by awk

● Comments
... shell style, // ... C++ style, /* ... C style */

● global var1, var2 [= <value>]

● if (EXP) STMT1 [else STMT2]

● do STMT while (EXP)

● for (EXP1; EXP2; EXP3) STMT

● foreach (VAR in ARRAY) STMT

● <<<, @count, @avg, @hist_linear, @hist_log

Allocations by size in bytes
value |------------------------------ count
 2 | 0
 4 | 0
 8 |@@@@@@@@@@@@@@@ 15
 16 | 0
 32 |@@@@@@@@@@@@@@@ 15
 64 |@@@@@@@@@@@@@@@ 15
 128 | 0
 256 | 0

Components of SystemTap script
● Probes

– probe kernel.function(PATTERN1) { [stmt ...] }
● PATTERN1 can be “function@path/to/file.c:123”

– probe module(PATTERN2).function(PATTERN1) { [stmt ...] }
● PATTERN2 can be “ext3” or “scsi_mod”, etc.

– probe netdev.transmit { [stmt ...] }
● Functions

– function translate_mask (mask) { <stmt ...> }

– function get_task_struct:long (pid:long) %{ <C_stmts ...> %}

Let’s look at kprobe_example.sh
● The SystemTap script is called within the shell script

– addr is gotten from /proc/kallsyms via the shell script

– get_eip_info() and get_eflags_info() are from regs.stp tapset
● Recap: tapset = reuse = extensible framework, no Makefiles

Components of SystemTap Tapset
● Think of this as a library

● Reusable probes and functions

● Encapsulate knowledge of kernel subsystem

● Same syntax as a SystemTap script

● Also ends with .stp; located at /usr/share/systemtap/tapset

● Use stap -I DIR to specify path to additional tapset scripts

● $ grep stap kprobe_example.sh
/usr/bin/env stap -p$1 -I ./ -e '

Let’s look at regs.stp
● Additional helper routines that can be reused by other scripts

● kread() macro – defined in runtime/loc2c-runtime.h

– To dereference pointers that could potentially be invalid

– Use it with CATCH_DEREF_FAULT()
● Recap: code safety, reuse and reduce code, reduce complexity

Getting started
● If it is not already installed, run:

– yum install systemtap kernel-devel

– yum –enablerepo=fedora-debuginfo install kernel-debuginfo
● Or try out bleeding edge version:

– read src/README
● System Administrators – Use existing SystemTap scripts

– http://sourceware.org/systemtap/wiki/WarStories

– src/examples, src/examples/small_demos
● Developers – Learn from existing scripts, write your own or reuse

http://sourceware.org/systemtap/wiki/WarStories

Some interesting
(and useful) scripts

nettop.stp
● Defined netdev.transmit and netdev.receive probes

● Prints network activity every 5 secs

● simpress sends and receives packets sometimes. Why?

iotop.stp
● Prints I/O activity

pfiles
● Very nice tool, inspired by Solaris’ pfiles tool

● Maps process PID to file descriptors

● Displays open socket information

● Lists opened files that are locked

plimit
● Inspired by Solaris’ plimit tool

psig
● Inspired by Solaris’ psig tool

sig_by_proc.stp
● Prints signal counts by process name in descending order

socktop
● Inspired by Dtrace’s socktop

● Tracks reads and writes on sockets by process

What’s next
● Wiki: http://www.sourceware.org/systemtap/wiki

● Language reference: http://sourceware.org/systemtap/langref/

● Mailing list: systemtap@sources.redhat.com

● My blog: http://www.kernel.sg/blog/category/systemtap/

● This work is licensed under a Creative Commons
Attribution-Share Alike 3.0 Unported License.

http://www.sourceware.org/systemtap/wiki
http://sourceware.org/systemtap/langref/
mailto:systemtap@sources.redhat.com
http://www.kernel.sg/blog/category/systemtap/
http://creativecommons.org/
http://creativecommons.org/licenses/by-sa/3.0/

Writing SystemTap Scripts

Eugene Teo
Slides: http://www.kernel.sg/talks/lca2008/

http://www.kernel.sg/talks/lca2008/

