From Fedora Project Wiki

< Features‎ | UsrMove

Revision as of 14:17, 13 December 2011 by Lewis41 (talk | contribs)

Spostamento di tutto in /usr


Fornire una modalità per montare in sola lettura quasi l'intero sistema operativo installato, in modo da effettuare automaticamente snapshot, o condividerlo tra host multipli al fine di ridurre spazio e mauntenzione. Invece di diffondere il contenuto dei pacchetti RPM in tutto lo spazio del filesystem, ed artificialmente separare /bin da /usr/bin e /lib da /usr/lib, si sposta tutto il contenuto in /usr, fornendo soltanto link simbolici nel filesystem radice.

/usr nel proprio filesystem fornisce molte preziose opzioni per le impostazioni personalizzate. Per ragioni storiche, si sono separati molti strumenti da /usr e spostati in /. Ma, le caratteristiche avanzate nei sistemi attuali non possono realmente condurre ad una /usr vuota. Sempre più rientrano in modo labile in tali impostazioni.

Invece di spostare altri strumenti in /, allo stato attuale si richiede che /usr sia montata da initramfs, per essere disponibile prima dell'effettivo avvio di 'init'. La separazione del filesystem di root su /usr, in Linux, non serve ad alcun proposito ma complica o previene impostazioni semplici e più flessibili.


Stato corrente

Consultare la versione originale.

Descrizione dettagliata

Non esiste un modo per allevare in modo affidabile un sistema moderno con una /usr vuota; le alternative sono due: copiare /usr nel rootfs o usare una initramfs che mascheri la separazione dal sistema.

Storicamente, /bin, /sbin, /lib avevano il proposito di contenere gli strumenti per montare /usr. Tale ruolo ora può essere conferito ad initramfs. Poichè l'initramfs sa dove trovare la partizione di root (che include /etc), esso può analizzare /etc/fstab ed altri file di configurazione e montare /usr prima di attivare la partizione di root ed eseguire /usr/bin/init. Da questo punto in poi, init monta le partizioni rimenenti in /etc/fstab ed il sistema si avvia come al solito.

The long-term plan is to clean up the mess and confusion the current split of / vs. /usr has created. All tools will move back to /usr where they belong, and the rootfs will only contain compat-symlinks into /usr. Almost the entire system installed by packages will reside in /usr. This will split all non-host specific data to /usr. /usr can then be seen as the Unix System Resources partition (/System), which defines the base operating system (e.g. F18 or RHEL-7).

This new /usr could be mounted read-only by default, while the rootfs is read-write and contains only empty mount points, compat-symlinks to /usr and the host-specific data like /etc, /root, /srv. Compared to today's setups, the rootfs will be very small. The new /usr could also easily be shared read-only across several systems, and it would contain almost the entire system. Such setups are more efficient, can optionally provide a lot more security, are more flexible, provide more sane options for custom setups, and are much simpler to setup and maintain.

This leaves us with the following well-defined directories, which compose the base of the system:

  • /usr - installed system; shareable; possibly read-only
  • /etc - config data; non-shareable
  • /var - persistent data; non-shareable;
  • /run - volatile data; non-shareable; mandatory tmpfs filesystem
|-- etc
|-- usr
|   |-- bin
|   |-- sbin
|   |-- lib
|   `-- lib64
|-- run
|-- var
|-- bin -> usr/bin
|-- sbin -> usr/sbin
|-- lib -> usr/lib
`-- lib64 -> usr/lib64

Benefit to Fedora

  • Simpler and cleaner overall file system layout, with full compatibility.
  • Clear separation of operating system and host specific resources.
  • Best possible compatibility, no confusion about tools install locations, no $PATH fiddling, all possible paths to a binary will always work.


  • The ability to share /usr is especially useful for clusters and virtual machines.
  • The ability to mount /usr read-only (e.g. on read-only media) can add to the security of the machine.
  • The entire /usr can safely be snapshotted during upgrades.

How To Test

  • update a Fedora package with files in /bin, /sbin, /lib or /lib64 via yum

-> see symbolic links in /bin, /sbin, /lib or /lib64 pointing to the file /usr/bin /usr/sbin /usr/lib or /usr/lib64


  • install a fresh F17

-> see symbolic toplevel links:

 /lib -> usr/lib
 /lib64 -> usr/lib64
 /sbin -> usr/sbin
 /bin -> usr/bin
 /usr/sbin -> bin

Ensure that basic shell operations work.

# /sbin/ifconfig |/bin/grep -i ip

User Experience

  • less toplevel directories


  • initramfs (dracut)
  • changes in selinux policies
  • repackaging of packages with content in /bin, /sbin, /lib*
  • alternatives symlinks?
  • filesystem rpm, toplevel symlinks


  • Provide a shell script to move all content from /bin, /sbin, /lib, /lib64 to /usr.
  • Add check to filesystem.rpm version 3, that refuses to install itself when /bin, /sbin, /lib, /lib64 is a directory. On new installation: create symlinks /bin -> usr/bin, /sbin -> usr/sbin, /lib -> usr/lib, /lib64 -> usr/lib64
  • Change the ~260 RPM packages with files in /bin, /sbin, /lib, /lib64 to install into /usr, and add Conflicts: filesystem < 3.
  • Change the SELinux policies.
  • Make sure dracut is able to mount needed filesystems specifies in /etc/fstab before starting systemd.

Buildsystem Transition

  • Disable mock root cache in buildsystem
  • Step 1: Build without filesystem conflict
  • Step 2: Build
 coreutils (without filesystem conflict)
  • Step 3: Build
  • Step 4: Build
  • Step 5: Build with filesystem conflict
  • Turn root cache back in buildsystem mock

Contingency Plan

  • We do not support to bootup with an empty /usr today, so moving things to /usr and have compat links in the rootfs should be low risk.


Release Notes

  • With this release, packages will not install files anymore in the following directories: /bin /sbin /lib /lib64 and /usr/sbin.
  • Fresh installations of this release, will have the following symbolic links in the toplevel directory:
 /bin -> usr/bin
 /sbin -> usr/sbin
 /lib -> usr/lib

and for 64bit architectures

 /lib64 -> usr/lib64

Comments and Discussion


What problem are you trying to solve?

We want to make /usr shareable in a sane way.

Additional benefits of this feature are:

  • less clutter across the filesystem
  • if you snapshot /usr before updating, you have snapshotted the OS at once.

What is currently broken with having /usr as a separate partition?

I don’t have /usr as a separate partition. What changes for me?

Nothing changes in functionality. All the old paths are reachable, because there a compat symlinks in place, which will not go away (at least not in the near future). All your scripts and binaries should work, like they did before. For the upgrade process to work, you will find /sbin, /bin, /lib and /lib64 mostly containing symbolic links. As soon, as these directories only contain symbolic links, the whole directory is replaced by only one symbolic link. These three or four toplevel symbolic links will stay there as long as the linux elf loader ABI is defined with “/lib/” or their architecture specific counterpart like “/lib64/”, and as long as scripts use “#!/bin/sh”.

I have /usr as a separate partition. What changes for me?

Not sure, how you managed to do that. In general, having /usr as a separate partition does not really work right now. See But with this feature implemented, things will now come back to a sane and supported way of having a /usr mount point.

Why don’t you fix the /usr situation by putting all the relevant binaries in /bin /sbin /lib and /lib64?


So, why don’t you just mount /usr from the initramfs and leave the files where they are?

Ok, so imagine you have a /usr mounted from a network location and you want to update a package. So maybe you mount the master copy of /usr on your master machine and update /usr with your package manager. Then you provide a new copy of the master /usr to the other machines, when they reboot. They all have the new updated /usr now. But what about /sbin /bin /lib and /lib64? They still have the old binaries. No glibc security update for them. So, every machine has to update these directories via rsync or such (rpm will not work with a readonly /usr). This doubles the maintenance to keep both parts of the system in sync.

You are doing it wrong! /bin and /sbin are there to rescue a broken /usr!

The most critical filesystem is /boot, because the kernel lives there. So the purpose of having /bin and /sbin for /usr repairing relied on _two_ working filesystems ( / and /boot). If either of them was broken, you were not able to rescue /usr. The role of the rescue system can easily be fulfilled by a rescue initramfs. So having the rescue initramfs in /boot, which contains the fsck utils, is in the same danger of becoming corrupted as the kernel. Now you only have to pull out your rescue CD, if /boot is corrupted and not if / is corrupted.

Then, let’s share /bin /sbin /lib /lib64 and /usr and mount them all from the initramfs!

Now, you get a feeling, that moving everything to /usr might make things easier....

Why don’t you move all /usr contents to / and forget about /usr?

Because this introduces a lot of new toplevel directories, which all have to be mount points then to be shared across other hosts.

Ok, but what about a root filesystem on the network and mounting local filesystems only?

Then you would share the toplevel directory hierarchy among all hosts. Hosts would need to mount /etc and /var for host-only versions. Especially /etc/fstab is not accessible, without adding information to the initramfs on how to mount it. For every host-only additional top level directory like /opt and /srv, you would have to have a mountpoint.